文章目录
前言
在当今社会,眼科疾病尤其是白内障对人们的视力健康构成了严重威胁。白内障是全球范围内导致失明的主要原因之一,早期准确的诊断对于疾病的治疗和患者的预后至关重要。传统的白内障检测方法主要依赖于眼科医生的专业判断,这不仅需要大量的人力和时间,而且诊断结果可能会受到医生经验和主观因素的影响。
随着深度学习技术的飞速发展,其在医疗图像分析领域展现出了巨大的潜力。卷积神经网络(CNN)作为深度学习中的重要模型,已经在多种医疗图像识别任务中取得了显著的成果,如肿瘤检测、疾病分类等。利用 CNN 对眼科图像进行分析,可以辅助医生更快速、准确地进行疾病诊断。
本文将详细介绍如何使用基于 DenseNet 的卷积神经网络进行白内障疾病检测。通过这个实战案例,不仅可以帮助读者了解 DenseNet 的原理和应用,还能掌握利用深度学习进行医疗图像分析的基本流程和方法,为进一步开展相关研究和实践提供参考。
一、数据准备
本案例使用的数据集是retina_dataset|眼科疾病数据集。
数据集下载地址:点击这里
Retina Dataset的构建基于眼底图像的分类需求,涵盖了四种主要的眼科疾病类别:正常、白内障、青光眼和视网膜疾病。数据集通过收集和整理不同患者的视网膜图像,确保每类疾病均有代表性样本。图像数据经过标准化处理,以保证在不同设备和条件下获取的图像具有一致性,从而为后续的分类和分析提供了坚实的基础。
二、项目实战
我的环境:
- 基础环境:Python3.9
- 编译器:PyCharm 2024
- 深度学习框架:Pytorch2.0
2.1 设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore") #忽略警告信息
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2.2 数据加载
import os,PIL,random,pathlib
data_dir = '数据路径'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
2.3 数据预处理
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
test_transform = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
2.4 数据划分
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True)
2.5 搭建网络模型
import torch.nn as nn
import torch
from torch import mean, max
class _DenseLayer(nn.Module):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate=0):
super(_DenseLayer, self).__init__()
self.drop_rate = drop_rate
self.dense_layer = nn.Sequential(
nn.BatchNorm2d(num_input_features),
nn.ReLU(),
nn.Conv2d(in_channels=num_input_features, out_channels=bn_size * growth_rate, kernel_size=1, stride=1,
padding=0),
Inceptionnext(bn_size * growth_rate, bn_size * growth_rate, kernel_size=3),
CBAMBlock("FC", 5, channels=bn_size * growth_rate, ratio=9),
nn.Conv2d(in_channels=bn_size * growth_rate, out_channels=growth_rate, kernel_size=1, stride=1, padding=0)
)
self.dropout = nn.Dropout(p=self.drop_rate)
def